Preparation of Gizzard Alpha-actinin and Vinculin

Preparation of Alpha-actinin

Day 1-2

Materials

- 1. 0.5 mM PMSF, 4°C. Need 20 ml per gram tissue. Prepare by diluting 100 mM PMSF stock in 95% ethanol.
- 2. Buffer A: 1 mM EGTA, 0.5 mM PMSF, 2 mM Tris-HCl, pH 9.0 at room temperature, bring to 37°C before use, 10 ml per gram tissue.
- 3. Buffer B: 20 mM NaCl, 0.1 mM EDTA, 0.5 mM DTT, 0.02% NaN₃, 20 mM Tris-acetate, pH $^{\circ}$ C, 4000 ml, or 1000 ml of 5x without DTT.
- 4. PBS solution A, 2000 ml, 4°C.
- 5. 0.5 M acetic acid for titration.
- 6. 3 M MgCl₂ stock.
- 7. Ultrapure (enzyme grade) ammonium sulfate.
- 8. DE-52 column, 2.5x20 cm.
- 9. Scalpels and dissection scissors.
- 10. Miscellaneous glassware, 2-liter graduate cylinders, 4-liter beakers.
- 11. Two GSA rotors and Sorvalls.
- 12. Meat grinder, prechilled in a cold room and rinsed with 20 mM EDTA, pH 7.0 immediately before use.
- 13. High salt (e.g. 3 M KCl) for soaking electrode.
- 14. Polyron with prechilled large generator.

- 1. Wash/rinse chicken or turkey (preferred) gizzards in cold PBS. Remove connective tissue with a scalpel. A typical preparation uses about 300 g (to fit into 2 GSA rotors). Extras can be stored frozen at -80°C. To use frozen gizzards, thaw for 1-2 hr in cold PBS at room temperature until the gizzards become pliable.
- 2. Pass dissected gizzards twice through a meat grinder, using first the coarse then the fine mesh. Weigh the tissue.
- 3. Homogenize with Polytron 3 times 10 sec bursts, in 10 volumes of 0.5 mM PMSF. Do this in an ice bucket. Adjust the speed to obtain the maximal vortex.
- 4. Centrifuge in a GSA rotor at 10,000 rpm, 4°C for 10 min. Discard supernatant and floating lipids.
- 5. Resuspend pellets in 10 volumes of 0.5 mM PMSF. Homogenize in a Waring blender for 15 sec at low speed.
- 6. Centrifuge in a GSA rotor at 10,000 rpm, 4°C for 15 min. Warm up rotor after the spin.
- 7. Discard supernatnat. Wipe lipid off the centrifuge bottle. Resuspend pellets in 10 volumes of buffer A at 37°C in a 4-liter beaker. Extract with gentle, constant stirring in water bath at 37°C for 1 hr.
- 8. Centrifuge in a GSA rotor at 7,000 rpm at room temperature for 10 min.
- 9. Collect supernatnat and measure volume. Titrate supernatant to pH 7.0-7.2 with 0.5 M acetic acid.
- 10. Bring the concentration of $MgCl_2$ to 10 mM. Use 3 M stock and add 1/300 of the volume measured in step 9. Stir at room temperature for 15 min.
- 11. Centrifuge in a GSA rotor at 7,000 rpm, room temperature for 10 min. Cool down the rotor to 4°C after this spin.
- 12. Carefully collect supernatant into a 4 liter beaker sitting on ice, avoid bubbles.
- 13. Bring ammonium sulfate to 40% saturation. Need 22.6 grams per 100 ml of volume in steps 9 and 10. The crystals should be added slowly with constant stirring, while monitoring and maintaining pH at 7.0-7.2. Soak the electrode in high salt after this step.
- 14. Let stand on ice for 45 min after all ammonium sulfate has dissolved.
- 15. Centrifuge in a GSA rotor at 7,000 rpm, 4°C for 15 min.
- 16. Resuspend pellets in 20-30 ml buffer B. Dialyze for 36 hr against 1 liter of buffer B, change buffer every 12 hr.

17. Equilibrate the DE-52 column with buffer B.

Day 3-4

Materials

- 1. Buffer B, 1500 ml, degased.
- 2. Buffer P: 0.2 mM DTT, 0.02% NaN₃, 50 mM (KH₂PO₄+K₂HPO₄), pH 7.0 at 4°C, 5 liters.
- 3. Hydroxylapatite column (BioRad DNA grade Bio-Gel HTP), 2.5x40 cm. The size is important since HTP has a limited binding capacity.
- 4. Gradient maker, fraction collector and UV monitor.

Procedure

- 1. Collect solution from the dialysis bag. Centrifuge in a 50.2Ti rotor at 45,000 rpm, 4°C for 45 min.
- 2. Apply to the DE52 column equilibrated in buffer B.
- 3. Wash column with 100-200 ml buffer B or until OD drops to baseline.
- 4. Elute with 300 ml 20-370 mM NaCl gradient. Fill the mixing side of the gradient maker with 155 ml buffer B, the reservoir side with 145 ml buffer B with 3.9 g NaCl. Collect 3 ml fractions at 20-25 ml/hr. Set monitor full scale at OD 2.0, chart speed 1.5 cm/hr. Wash the column with 1 liter of 2 M NaCl in buffer B when finish.
- 5. Locate peak fractions. Run SDS-PAGE of various peaks. Pool vinculin fractions near the beginning of the gradient and follow vinculin preparation protocols.
- 6. Pool alpha-actinin fractions towards the end of the gradient. Dialyze against 2 liters of buffer P for 24 hr. Change buffer at 12th hr.
- 7. Equilibrate the hydroxylapatite column with buffer P.

Day 5-6

Materials

- 1. Buffer P, 2000 ml, degased.
- 2. Buffer B, 5000 ml.
- 3. 1 M (KH₂PO₄+K₂HPO₄), pH 7.0, 100 ml.

- 4. Ultrapure (enzyme grade) ammonium sulfate.
- 5. Sepharose 6B-CL column, 2.5x90 cm.
- 6. Gradient maker, fraction collector and UV monitor.

Procedure

- 1. Collect solution from the dialysis bag. Centrifuge in a 50.2Ti rotor at 35,000 rpm, 4°C for 2 hr.
- 2. Apply to the hydroxylapatite column equilibrated in buffer P. Wash with 50-100 ml buffer P or until OD drops to baseline.
- 3. Elute with 500 ml 50-300 mM phosphate gradient. Fill the mixing side of the gradient maker with 255 ml buffer P, reservoir side with 180 ml buffer P and 65 ml buffer 3. Elute at 20 ml/hr. Collect 4 ml fractions. Set monitor full scale at OD 2.0, chart speed 1.5 cm/hr. Wash the column with 1 liter of 500 mM phosphate in buffer P when finish.
- 4. Locate peak fractions and run SDS-PAGE. Pool alpha-actinin containing fractions (central peak). Measure volume.
- 5. Precipitate with 45% saturation ammonium sulfate (26 g per 100 ml). The crystals should be added slowly with constant stirring, while monitoring and maintaining pH at 7.0-7.2. Soak the electrode in high salt after this step.
- 6. Let the solution stand on ice for 30-45 min after all ammonium sulfate has dissolved.
- 7. Collect precipitates by centrifugation in a SS34 rotor at 10,000 rpm, 4°C, for 15 min.
- 8. Resuspend pellets in 4 ml buffer B. Dialyze against 2 liters of buffer B for 24 hr. Change buffer at 12th hr.
- 9. Equilibrate Sepharose 6B-CL column with 1000 ml buffer B.

Day 7-8

Materials

- 1. Buffer B, 2000 ml.
- 2. 2 mM PIPES, 0.02% NaN₃, 3000 ml.
- 3. Ultrapure (enzyme grade) ammonium sulfate.

- 1. Collect solution from the dialysis bag. Centrifuge in a 50Ti rotor at 40,000 rpm, 4°C for 45 min.
- 2. Apply to Sepharose 6B-CL column equilibrated in buffer B.
- 3. Elute with maximum pressure. Collect 3 ml fractions. Set monitor full scale at OD 2.0, chart speed 1.5 cm/hr.
- 4. Run SDS-PAGE of peaks to locate alpha-actinin (central peak). Pool fractions and measure volume.
- 5. Concentrate with CentriPrep or with ammonium sulfate precipitation: precipitate alpha-actinin with 45% saturation ammonium sulfate (26 g per 100 ml; the crystals should be added slowly with constant stirring, while monitoring and maintaining pH at 7.0-7.2. Soak the electrode in high salt after this step), let the solution stand on ice for 30-45 min after all ammonium sulfate has dissolved, and collect precipitates by centrafugation in a SS34 rotor at 10,000 rpm, 4°C, for 15 min.
- 6. Resuspend pellets in 3 ml of 2 mM PIPES with azide. Add DTT to 5 mM. Dialyze against 1000 ml of 2 mM PIPES. Change buffer twice over a period of 24 hr.
- 7. Clarify in a 50Ti rotor at 40,000 rpm, 4°C, for 45 min.
- 8. Store in liquid nitrogen as aliquots. Stable for months.

Preparation of Vinculin

Day 1-2

Materials

- 1. Buffer C: 20 mM NaCl, 0.5 mM DTT, 0.1 mM EDTA, 0.02% NaN₃, 20 mM NaAc, pH 5.0 at 4° C, 5000 ml, or 1000 ml 5x without DTT.
- 2. 5 mg/ml PMSF, 5 mg/ml leupeptin in 95% ethanol, 0.3-0.5 ml.
- 3. CM-52 column, 1.5x40 cm.

- 1. Carry through alpha-actinin preparation until day 3-4 step 5. Measure the volume of vinculincontaining fractions.
- 2. Add PMSF and leupeptin very slowly, while stirring, to a final concentration of 0.1 mg/ml.

- 3. Dialyze against 2 liters of buffer C for 24 hr. Change buffer at 12th hr. The solution turns cloudy transiently as it passes across the isoelectric point of vinculin.
- 4. Equilibrate CM-52 column with buffer C.

Day 3-4

Materials

- 1. Buffer C, 1000 ml.
- 2. Ultrapure (enzyme grade) ammonium sulfate.
- 3. 2 mM PIPES, 0.02% NaN₃ 1500 ml.
- 4. High salt (e.g. 3 M KCl) for soaking electrode.

- 1. Collect solution from the dialysis bag. Centrifuge in a 50Ti or 50.2Ti rotor at 35,000 rpm, 4° C for 2 hr.
- 2. Apply to CM-52 column equilibrated with buffer C.
- 3. Wash with 50-100 ml buffer C or until OD drops to baseline.
- 4. Elute with 500 ml 200-500 mM NaCl gradient in buffer C. Fill the mixing side of the gradient maker with 255 ml of buffer C with 2.9 g NaCl, the reservoir side with 245 ml buffer C with 7.2 g NaCl. Elute at 10 ml/hr. Collect 4 ml fractions. Set monitor full scale at OD 0.5, chart speed 1.5 cm/hr. Wash the column with 2 M NaCl in buffer C when finish.
- 5. Locate peaks and run SDS-PAGE. Pool vinculin fractions (central peak).
- 6. Carefully bring pH close to 7.0 with 0.1 N KOH. Soak electrode in high salt after this step.
- 7. Concentrate with CentriPrep or concentrate with the ammonium precipitation method: measure volume and precipitate with 45% saturation ammonium sulfate (26 g per 100 ml;the crystals should be added slowly with constant stirring, while monitoring and maintaining pH at 7.0-7.2. Soak the electrode in high salt after this step). Let the solution stand on ice for 30-45 min after all ammonium sulfate has dissolved, collect precipitates by centrafugation in a SS34 rotor at 10,000 rpm, 4°C, for 15 min. Resuspend pellets in 300-700 µl of 2 mM PIPES with azide.
- 8. Add DTT to 5 mM. Dialyze against 500 ml of 2 mM PIPES. Change buffer twice over a period of 24 hr.

- 9. Clarify in a 50Ti rotor at 40,000 rpm, 4° C for 45 min, or in a 42.2Ti rotor at 25,000 rpm, 4° C for 20 min. Concentrate with Centricon if necessary.
- 10. Store in liquid nitrogen as aliquots. Stable for months. Also stable at 4° C for a couple of weeks.